Occupancy Detection in Commercial and Residential Environments Using Audio Signal

نویسندگان

  • Shabnam Ghaffarzadegan
  • Attila Reiss
  • Mirko Ruhs
  • Robert Dürichen
  • Zhe Feng
چکیده

Occupancy detection, including presence detection and head count, as one of the fast growing areas plays an important role in providing safety, comfort and reducing energy consumption both in residential and commercial setups. The focus of this study is proposing affordable strategies to increase occupancy detection performance in realistic scenarios using only audio signal collected from the environment. We use approximately 100-hour of audio data in residential and commercial environments to analyze and evaluate our setup. In this study, we take advantage of developments in feature selection methods to choose the most relevant audio features for the task. Attribute and error vs. human activity analysis are also performed to gain a better understanding of the environmental sounds and possible solutions to enhance the performance. Experimental results confirm the effectiveness of audio sensor for occupancy detection using a cost effective system with presence detection accuracy of 96% and 99%, and the head count accuracy of 70% and 95% for the residential and commercial setups, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Algorithm for Voice Activity Detection Based on Wavelet Packets (RESEARCH NOTE)

Speech constitutes much of the communicated information; most other perceived audio signals do not carry nearly as much information. Indeed, much of the non-speech signals maybe classified as ‘noise’ in human communication. The process of separating conversational speech and noise is termed voice activity detection (VAD). This paper describes a new approach to VAD which is based on the Wavelet ...

متن کامل

Occupancy monitoring and prediction in ambient intelligent environment

Occupancy monitoring and prediction as an influential factor in the extraction of occupants' behavioural patterns for the realisation of ambient intelligent environments is addressed in this research. The proposed occupancy monitoring technique uses occupancy detection sensors with unobtrusive features to monitor occupancy in the environment. Initially the occupancy detection is conducted for a...

متن کامل

Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)

Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...

متن کامل

Identification of factors that assure quality of residential environments, using environmental assessment indices: a comparative study of Two of Tehran’s neighborhoods (Zafaranieh &Khaniabad)

Living in satisfying urban environments is important for an individual’s well-being. In order to create such environments, planners, designers, and policy makers need to understand the structures that cause residents to feel satisfied with their environments. This paper focuses on the perceived quality of urban residential environments: dwellings and neighborhoods. First, literature review w...

متن کامل

Selecting the appropriate scenario for forecasting energy demands of residential and commercial sectors in Iran using two metaheuristic algorithms

This study focuses on the forecasting of energy demands of residential and commercial sectors using linear and exponential functions. The coefficients were obtained from genetic and particle swarm optimization (PSO) algorithms. Totally, 72 different scenarios with various inputs were investigated. Consumption data in respect of residential and commercial sectors in Iran were collected from the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017